Non-negative Matrix Factorization: Robust Extraction of Extended Structures
نویسندگان
چکیده
We apply the vectorized Non-negative Matrix Factorization (NMF) method to post-processing of direct imaging data for exoplanetary systems such as circumstellar disks. NMF is an iterative approach, which first creates a non-orthogonal and non-negative basis of components using given reference images, then models a target with the components. The constructed model is then rescaled with a factor to compensate for the contribution from a disk. We compare NMF with existing methods (classical reference differential imaging method, and the Karhunen-Loève image projection algorithm) using synthetic circumstellar disks, and demonstrate the superiority of NMF: with no need for prior selection of references, NMF can detect fainter circumstellar disks, better preserve low order disk morphology, and does not require forward modeling. As an application to a well-known disk example, we process the archival Hubble Space Telescope (HST) STIS coronagraphic observations of HD 181327 with different methods and compare them. NMF is able to extract some circumstellar material inside the primary ring for the first time. In the appendix, we mathematically investigate the stability of NMF components during iteration, and the linearity of NMF modeling.
منابع مشابه
Iterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کاملThe Feature Extraction and Recognition of Phone Image Based on Robust Sparse Non-Negative Matrix Factorization
Sparse non-negative matrix factorization algorithm can project image data effectively. It plays an important role in image matching and recognition. In order to improve the effectiveness of SNMF algorithm, which is used in feature extraction of image data with noises, we added a noise term and combined it with SNMF algorithm. Then, we proposed a new sparse optimization objective function and wo...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملNoise Robust Distant Automatic Speech Recognition Utilizing Nmf Based Source Separation and Auditory Feature Extraction
This paper describes our contribution to the 2 CHiME challenge and focuses on the small vocabulary task, i.e. track one. We present a robust system combination that involves source separation, auditory feature extraction and a modified automatic speech recognition back-end. The source separation code is based on a non-negative matrix factorization approach and the presented auditory feature ext...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017